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Introduction

The main goal of this work is the application of the geometrical formalism of Quantum Mechanics

to the study of the dynamics of a particular kind of systems, known under the name of open

systems. To the exposition of the fundamental characteristics of these we will devote the first

chapter of this thesis. The study of this kind if systems is a matter of current importance

due to the fact that it is in this framework that we can understand processes like decoherence,

something that is necessary to advance in fields like quantum information and computation.

To carry out this task, we propose a different approach to the one usually employed, via an

alternative mathematical formalism based on differential geometry. In the second chapter we

expose the procedure to change fomalism and we show the direct application to the problem

of open systems, by bringing the dynamic evolution from the space of density matrices to that

of tensors. These tensors encode structures such as the matrix conmutator, what allows us to

observe the transition from quantum to classical behaviour of a system under decoherence, when

the non-conmutativity of some of its observables is lost.

The third chapter is devoted to the presentation of some examples of the new method proposed,

and to the obtention of a result that establishes its range of applicability for a particular system

and dynamics.
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Chapter 1

Open systems

In this chapter we explain the basic concepts of open quantum systems, as they are known today.

Our goal is to present the general form of the dynamics in one such system, under the additional

simplifying hypothesis that it is Markovian, with the aim of applying this result in the central

part of this work. Our main references along the whole chapter will be [20] and [2].

1.1 Time evolution in quantum systems

Let us consider a quantum system composed by two subsystems S and R, with associated state

spaces HS and HR. The state space of the global system is given by the tensor product of the

spaces of the subsystems:

H = HS ⊗HR

In what follows we will assume that dimH <∞. Let us assume that this system is closed, i.e., it

does not exchange information with any other system. In this case, the postulates of Quantum

Mechanics tell us that the evolution of a state |ψ〉 ∈ H is given by Schrödinger’s equation:(taking

~ = 1)
∂|ψ(t)〉
∂t

= −iH(t)|ψ(t)〉

where H(t) is the Hamiltonian operator. Thanks to the linearity of this equation we can define

a time evolution operator U(t, t0) which, applied to a state |ψ(t0)〉 produces the state at

time t, |ψ(t)〉 = U(t, t0)|ψ(t0)〉. From Schrödinger’s equation follows as well that U(t, t0) is a

unitary operator. When H is independent of time1, we can give the following expression for the

time evolution operator:

U(t− t0) ≡ U(t, t0) = e−i(t−t0)H

In many occasions we will be interested in working with mixed states, encoded by adensity

matrix ρ, which satisfies the following three conditions:

• It is Hermitian: ρ† = ρ

• It is positive definite: 〈ψ|ρ|ψ〉 ≥ 0 ∀|ψ〉 ∈ H
1If on the contrary H were dependent on t, the expression becomes somewhat more complicated since we have

to include the time ordered exponential:

U(t, t0) = T e−i
∫ t
t0

dsH(s)

4



CHAPTER 1. OPEN SYSTEMS 5

• Its trace equals one: tr ρ = 1.

We shall denote by D(H) the space of density matrices over H. For example, for a two level

system (qubit), any density matrix can be written in the form ρ = 1
2

(
1 +

∑3
i=1 xiσi

)
with

{σi}3i=1 the three Pauli matrices and x21 +x22 +x23 ≤ 1, since the purity of the state P = tr (ρ2) =
1
2(1 + x21 + x22 + x23) must satisfy P ≤ 1. D(H) may thus be represented as a unit radius sphere

in R3 called the Bloch sphere, given by x21 + x22 + x23 ≤ 1. For P = 1 we obtain the pure states

(ρ of rank 1, surface of the sphere), and for P < 1 the mixed states (ρ of rank bigger than 1,

interior of the sphere), up to the maximally mixed state P = 1
2 (ρ = 1

21, center of the sphere).

It can be checked that the expected value of an observable in a state given by a density matrix

ρ is given by

〈A〉 = tr (ρA)

Given an orthonormal basis {|ψk〉} of H, every density matrix adopts the form

ρ =
∑
k

wk|ψk〉〈ψk|

with wk ≥ 0,
∑

k wk = 1. From this expression it is easy to prove that the time evolution of ρ is

given by von Neumann’s equation:

∂ρ(t)

∂t
= −i[H(t), ρ(t)] =⇒ ρ(t) = U(t, t0)ρ(t0)U

†(t, t0) (1.1)

This is the usual frame in which Quantum Mechanics is formulated for closed or isolated systems.

Nevertheless, in many ocassions we are interested in focusing only on the dynamics of one of the

subsystems S,R. We may find that the dynamics of the global system is excessively complicated,

as it happens if we take S as a physical system interacting with an environment R that is too

complex or has too many degrees of freedom. In this kind of situations we may consider the

reduced density matrix ρS ∈ D(HS) induced by a global state ρ ∈ D(H), which is given by the

partial trace operation:

ρS = trR ρ =
∑
k

〈ψRk |ρ|ψRk 〉

with {ψRk } a Hilbert basis of the space HR. This way we are able to perform measurements,

and in general to work on S directly, without having to consider the global state of the system.

For example, if A is an observable in HS , its expected value in the state ρ will be

〈A〉 = tr(AρS) = tr{(A⊗ I)ρ}

The dynamics of this ρS will now take the following form

ρS(t) = trR{U(t, t0)ρ(t0)U
†(t, t0)} (1.2)

and if subsystems S and R interact with each other, in general we cannot obtain from (1.2) a

unitary evolution2 like (1.1) for ρS . We thus face the time evolution of an open, which does not

obey the usual rules, since, for example, it allows the rank of the density matrix to grow, and in

general allows the purity P of our system to decrease with time (decoherence), when both were

2This would indeed be possible if the evolution operator factorized as U(t, t0) = US(t, t0) ⊗ UR(t, t0), but in
general that will not be the case.
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invariant under unitary evolution.

1.2 Universal dynamical maps

The equation (1.2) gives us the time evolution of a reduced density matrix. Hence we would like

to write it as a dynamical map that allows us to evolve a certain state ρ ∈ D(HS) from some

time t0 to some other time t, in the following manner:

E(t,t0) (ρ(t0)) = ρ(t)

Of course, not all possible dynamical maps E are admissible as true physical evolutions. Those

which are receive the name of universal dynamical maps3, o UDM por sus siglas en inglés

[20]. The adjective universal means in this case that these maps can be defined independently

of the density matrix they are acting on, a very desirable property if they are to represent a

physical evolution. In what follows we will see what kind of maps UDMs are.

A first characterization we can give for UDMs is the following: let us fix a state ρR ∈ D(HR).

This can be a reference state of the system, for example a thermal state. Once ρR has been

chosen, we build the separable state4 ρS(t0) ⊗ ρR for any initial density matrix ρS(t0) and we

define

E(t,t0)[ρS(t0)] = trR {U(t, t0)[ρS(t0)⊗ ρR]U †(t, t0)} (1.3)

An evolution of this kind can be written only in terms of operators acting on density matrices

of D(HS)[2]. It is enough to use the spectral decomposition of our reference state:

ρR =
∑
n

λn|φn〉〈φn| (1.4)

and combining (1.3) and (1.4) we obtain:

E(t,t0)[ρS(t0)] =
∑
nm

Knm(t, t0)ρS(t0)Knm(t, t0)
† (1.5)

where

Knm(t, t0) =
√
λm trR {|φm〉〈φn|U(t, t0)}

Merging both indices in one, n,m → α, (note that at most that index will have to take N2

values, where N is the dimension of the space R) we conclude that any UDM can we written in

the following general form, which is handier in operational terms (Kraus representation):

ρS(t) =
∑
α

Kα(t, t0)ρS(t0)Kα(t, t0)
† con

∑
α

K†α(t, t0)Kα(t, t0) = 1 (1.6)

We can check on this general form that the result of evolving a density matrix with a UDM is

itself a density matrix, an unavoidable requirement if we want it to have a physical meaning.

Indeed we have:

3Depending on the reference, the reader might find other names such as quantum dynamical map or quantum
operation, this last one especially in the context of quantum computation.

4It is reasonable to assume that, when the system has been prepared, it begins its evolution in a separable
state.
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• ρ(t) is Hermitian:

ρ(t)† =
∑
α

(Kα(t, t0)ρ(t0)Kα(t, t0)
†)† =

∑
α

Kα(t, t0)ρ(t0)Kα(t, t0)
† = ρ(t)

• ρ(t) is positive definite, since so is every term in the sum: Kα(t, t0)ρ(t0)Kα(t, t0)
†

〈ψ|Kα(t, t0)ρ(t0)Kα(t, t0)
†|ψ〉 = (Kα(t, t0)

†|ψ〉)†ρ(t0)(Kα(t, t0)
†|ψ〉 ≥ 0 ∀|ψ〉 ∈ H

• And its trace equals one thanks to the condition on the operators Kα(t, t0):

tr ρ(t) = tr

(∑
α

Kα(t, t0)ρ(t0)Kα(t, t0)
†

)
=
∑
α

tr (Kα(t, t0)ρ(t0)Kα(t, t0)
†) =

= tr

{(∑
α

Kα(t, t0)
†Kα(t, t0)

)
ρ(t0)

}
= tr ρ(t0) = 1

1.2.1 Completely positive maps

Definición 1.1. A linear map F : V 7−→ V is completely positive if

F ⊗ 1 : V ⊗W 7−→ V ⊗W

is positive independently of the space W , and in particular of its dimension5.

A very relevant characterization of UDMs is the following [20]:

A UDM is a completely positive, trace-preserving linear map.

Let us see what it means for a map to be completely positive and why it is important (in fact

indispensable) from a physical point of view. Let us assume that we have a third subsystem

W , in addition to the other two we had been dealing with. Let us as welll assume that this

subsystem does not interact with the other, so that it follows its own unitary evolution UW (t, t0)

in a totally independent way to the other subsytems. We focus on the subsystem SW , which

we assume starts from an initial state ρSW (t0). Its dynamics will be given, since S and W

are independent, by the tensor product of the dynamics of the two subsystems: the unitary

evolution of W , UW(t,t0) and the more general UDM of S:

ρSW (t) = E(t,t0) ⊗ UW(t,t0)[ρSW (t0)]

Since in the end what we just gave isn’t but the reduced dynamics of a subsystem SW in

interaction with another part of the global system, R, even though only through S, its evolution

must be given by a UDM, so that we conclude

E(t,t0) is a UDM =⇒ E(t,t0) ⊗ UW(t,t0) is a UDM

5By specifying the dimension of W one defines the concept of n-positivity: F is n-positive when F ⊗ 1n is
positive. In finite dimension, F is completely positive if it is n-positive for all n.
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where UW(t,t0) is a unitary evolution. In particular, hence, E(t,t0) ⊗ UW(t,t0) must preserve the

positivity of density matrices. Since we can factor

E(t,t0) ⊗ UW(t,t0) = (E(t,t0) ⊗ 1)(1⊗ UW(t,t0))

and the factor (1⊗UW(t,t0)) is unitary (and hence positive), the condition is imposed on the other

factor, and it remains that E(t,t0) is completely positive. It can be shown that the condition of

being completely positive is stronger than the one of only being positive, i.e. not every positive

map is completely positive6. The theorem of representation for completely positive maps, which

connects this characterization with the one we gave previously was proved by Karl Kraus [15].

1.3 Markovianity and semigroups

The dynamics of open systems would not be as interesting if it did not possess certain char-

acteristics that distinguish it drastically from the evolution in closed systems. Of them one of

the most relevant is that, in general, a UDM will not be reversible. Let us remember that, in

a closed system, the evolution operator family acquires a group structure, where every element

is invertible. In the simplest case, when H no depende del tiempodoes not depend on time,

U(t) = e−iHt has U(−t) = eiHt as an inverse. The situation is nevertheless quite different for

open systems. Given a UDM E(t0,t), we may ask ourselves whether there is another UDM that

acts as its inverse, as we saw it happens for unitary evolutions:

E(t0,t) = E−1(t,t0)

The answer to this question is usually negative and is given by the following theorem whose

proof we can see in [20]:

Teorema. A UDM has an inverse UDM if and only if it is unitary.

Thus, open systems lose the reversibility property as soon as their dynamics is no longer unitary.

This implies that a family of operators E(t,s) will no longer be able to give rise to a group, but

at most to a semigroup or an evoution family, as we will soon see.

1.3.1 Markovian evolution

In not very technical terms, Markovian evolution is described as that which has no “memory”,

that is to say, that which is only affected by the current state of the system, and not by the

whole evolution history of it. In the caso of a UDM, we will say it is Markovian if it admits the

following composition law:

E(t,t0) = E(t,t1)E(t1,t0) (1.7)

for any intermediate time t1. The lack of memory is reflected in the differential equation for the

density matrix being first order:

dρ(t)

dt
= lim

h→0

ρ(t+ h)− ρ(t)

h
= lim

h→0

(E(t+h,t) − I)ρ(t)

h
= L(t)ρ(t) (1.8)

6The interested reader can find an example (transposition of a qubit) in [19].
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where we have used the composition law (1.7). L(t) is the generator of the evolution, also known

as Lindblad superoperator. This is, of course, an approximation. In general, the UDMs do not

have to satisfy (1.7), because E(t,t1) might not be a UDM. We might think, for instance, about

defining it as E(t,t1) = E(t,t0)E−1(t1,t0)
but we have already seen that, in general, even if an UDM

is bijective, and hence has an inverse, this need not be a UDM, so we cannot go on that way.

The suposition of Markovianity is therefore a simplifying hypothesis, since it is conditioned to

the decay time of system-environment correlations to be much smaller that the relaxation time

of the system, to be able to neglect memory effects.

From now on we will assume that the evolution of our system is Markovian. The evolution

operators form then an evolution family, characterized by

E(s,s) = 1 E(t,s) = E(t,r)E(r,s) si t ≥ r ≥ s

Or in the case in which E(t,s) ≡ Et−s, a dynamical semigroup7:

E0 = 1 EtEs = Et+s t, s ≥ 0

This kinf of structures present interesting properties. Let us start by semigroups. Since we

will always assume that the evolution of our system is sufficiently smooth, it is worth for us to

restrict ourselves to uniformly continuous semigroups, i.e., those which satisfy8

‖Et − Es‖ → 0 cuando t→ s

The advantage of this semigroups is that automatically the map t→ Et is differentiable and we

may characterize the semigroup by a generator L, satisfying

dEt
dt

= LEt

L is a linear operator over the space where the evolution operators live. This generator is the

same L that we saw in (1.8), in the particular case in which it does not depend on time. If the

semigroup is contractive,i. e.,

‖Et‖ ≤ 1 ∀t ≥ 0

the exponential of the operator L indeed generates the whole semigroup:

Et = etLE0 = etL1

All the semigroups with which we will work will have to be contractive so that the image of a

density matrix is a density matrix. This is due to the following property, whose proof we find

in [20]:

A linear map E over the set of trace class operators over a Hilbert space leaves the

set of density matrices invariant if and only if it is contractive and trace preserving.

The requirement that a semigroup is contractive can be translated into a series of conditions

on its generator (Hille-Yosida and Lumer-Phillips theorems). We omit the discussion of this

7A semigroup, contrary to a group, does not require the existence of inverses.
8The norm that appears in this equation is the norm induced on the space of linear operators over a Banach

space by the norm of this Banach space ‖T‖ = sup‖x‖=1 ‖T (x)‖.
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conditions since soon we will present string requirements for L.

Evolution families can be given a similar though slightly more complicated treatment than

semigroups. In the case of being differentiable they also have a generator L(t), which depends

this time on the parameter t, since otherwise the family is reduced to a semigroup like the

previous ones. From now on we will deal with the case where the evolution is given by a

semigroup, and we will care about the generator L which characterizes it.

1.3.2 General form of the generator of a totally positive dynamical semigroup

We finish this first chapter where we have made an introduction to the peculiarities of time

evolution in open systems with an important result: the characterization of the generator of

a totally positive dynamical semigroup. Because of everything we have exposed above, it will

be this kind of semigroups that will give us the evolution in open quantum systems under the

Markovian approximation. In 1976, Lindblad published which was this general form [16] basing

himself in previous work by Kossakowski [14]. Soon after Gorini, Kossakowski y Sudarshan [10],

working independently from Lindblad, proved that in the general case of systems a finite number

N of levels, the most general form of the generator of a totally postive dynamical semigroup is

Lρ = −i[H, ρ] +
1

2

N2−1∑
i,j=1

cij([Fi, ρF
†
j ] + [Fiρ, F

†
j ]) (1.9)

where H is a Hermitian operator, {Fi} is a set of N2 − 1 operators such that together with the

identity they form a basis of the space of complex N × N matrices which is orthogonal with

respect to the scalar product (Fi, Fj) = tr(F ∗i Fj), and (cij) is a complex positive definite matrix.

The first term is known as the Hamiltonian part, whereas the rest is called dissipative part. We

can choose H to be traceless, then it is unique for a fixed L,and so are the coefficients cij once

we fix the Fi of the basis. We must be cautious to observe that, in general, H will not be equal

to the Hamiltonian of the system considered as a closed system.



Chapter 2

Geometrical formalism

In this chapter we describe a mathematical formalism that is different to the one usually em-

ployed to deal with quantum systems, and we are going to apply it to the problem of studying

the dynamics of open quantum systems. We will start by characterizing the algebraic struc-

tures defined over the set of Hermitian operators over H to turn them afterwards into geometric

structures over its dual. Finally we will show how we can interpret the dynamics as an evolution

over these structures.

2.1 Mathematical structure of HermH
We start from the Hilbert space, H which contains the possible states of our system, and we

assume dimH = N <∞. The set of linear operators acting on H has a particular structure:

Definición 2.1. A C*-algebra (A, ·, ‖ · ‖,∗ ) is a complex vector state endowed with

• a product ·, which gives it a structure of linear associative algebra

• a norm ‖·‖, which gives it a structure of Banach space (complete normed space) and such

that the product is continuous (i.e. submultiplicativity is satisfied ‖AB‖ ≤ ‖A‖‖B‖)

• an involution, i.e., a map ∗ : A → A such that

(A+ λB)∗ = A∗ + λ̄B∗ (AB)∗ = B∗A∗ (A∗)∗ = A

and the so-called C∗ identity is satisfied: ‖AA∗‖ = ‖A‖2

Indeed, for a finite number N of levels, H ∼= CN and the set of linear operators acting on it

is M(N) (N × N matrices with complex entries). It can be seen that, with the usual matrix

product (given by the composition of linear maps), the norm

‖A‖ = sup
06=x∈H

‖Ax‖
‖x‖

and the involution given by Hermitian conjugation A∗ = A†, M(N,C) acquires a C*-algebra

structure. In its more general formulation, a quantum system is described by its C*-algebra of

operators. The GNS (Gelfand-Naimark-Segal) theorem allows to obtain from it the states as

linear positive normalized functionals over the elements of the C*-algebra and proves that the

set of this states is precisely a Hilbert space [21][22][23].

11
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The Hermitian operators over H, which represent the observables of the system, play a major

role inside the C*-algebra since they conform its real part, i.e., the set of operators that are

invariant under the involution, HermH = {A ∈ M(N,C)|A† = A}. In general the real part of

a C*-algebra has a structure known as Lie-Jordan-Banach algebra, or LJB algebra. Showing

explicitly this structure is the main goal of this section, and we will proceed part by part, so we

beg the reader for patience.

Inside our C*-algebra M(N) we can define, from the usual matrix product1 a new operation ◦
known as Jordan product or, more commonly, anticonmutator, which is the symmetric part of

the associative product, A ◦B := 1
2(AB +BA). With this operation M(N) turns into a Jordan

algebra:

Definición 2.2. A Jordan algebra (A, ◦) is a vector space A endowed with a conmutative

bilinear product ◦ : A×A → A such that

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a) ∀a, b ∈ A

In the same way, we can define another new operation from the antisymmetric part of the

associative product, which is the one know as Lie bracket, or more commonly, anticonmutator,

[A,B] := AB −BA. With this new operation, M(N) acquires a Lie algebra structure:

Definición 2.3. A Lie algebra (A, [, ]) is a vector space A endowed with a bilinear product

[·, ·] : A×A → A which:

• Is antisymmetric: [a, b] + [b, a] = 0 ∀a, b ∈ A

• Satisfies the Jacobi identity [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 ∀a, b, c ∈ A

Let us stop for a moment on Lie algebras. This kind of structures play a very important role

in Mathematics, and especially in Physics, due to the fact that there is always one of them

associated to every Lie group:

Definición 2.4. A Lie group is a group endowed with a structure of differentiable manifold

such that the group’s product and inversion operations are differentiable maps.

Physics is full of Lie groups which encode the symmetries of a system, such as the spacetiem

translation group, or the rotation group.

M(N,C) is a real manifold of dimension 2N2, which contains an open submanifold of capital

importance, the general linear group GL(N,C), or the group of invertible matrices. The general

linear group is hence a Lie group. Its associated Lie algebra is denoted gl(N,C) and turns

out to be isomorphic to M(N,C). Also, the corresponding Lie bracket is precisely the usual

conmutatorof matrices, hence we recover waht we already knew: M(N,C) is a Lie algebra.

The elements of a basis of a finite dimensional Lie algebra g are the generators of the associated

Lie group G via the exponential map exp : g→ G something we will make use of soon2.

1From now on we will call it associative product, sine we are going to define new operations that will not satisfy
associativity.

2The exponential map from any Lie algebra to its associated Lie group always exists. In the particular case of
GL(n,C), the exponential map coincides with the usual matrix exponential, defined by the convergent series

eA =
∞∑

n=0

An

n!
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Once we have seen all this, we are ready to define what a Lie-Jordan-Banach algebra is:

Definición 2.5. A Lie-Jordan-Banach algebra (A, ◦, [, ], ‖ · ‖) is an algebra endowed with a

Jordan product ◦ and a Lie bracket [, ] which satisfy the following compatibility conditions:

• The Lie brackt defines a derivation of the Jordan product, i.e., the Leibniz rule is satisfied:

[a, b ◦ c] = [a, b] ◦ c+ b ◦ [a, c] ∀a, b, c ∈ A

• The associators of both products are proportional, i.e., for some ~ ∈ R:

(a ◦ b) ◦ c− a ◦ (b ◦ c) = ~2[[a, b], c]− [a, [b, c]] ∀a, b, c ∈ A

and with a norm ‖ · ‖ so that it has a structure of Banach space and satisfies:

‖a ◦ b‖ ≤ ‖a‖‖b‖ ‖[a, b]‖ ≤ 1

|~|‖a‖‖b‖ ‖a2‖ = ‖a‖2 ‖a2‖ ≤ ‖a2 + b2‖

for all a, b ∈ A.

Therefore, to endow HermH with an LJB structure we must start by seeing that it is a Lie

algebra and a Jordan algebra. But this last part is very easy, since we can restrict the Jordan

product of M(N,C) to HermH and we note that the operation is closed:

A,B ∈ HermH =⇒ 1

2
(AB +BA) ∈ HermH

However, the Lie bracket ofM(N,C) cannot be used as a Lie bracket for the Hermitian operators,

since its restriction to this set turns out not to be a closed operation:

A,B ∈ HermH 6=⇒ (AB −BA) ∈ HermH

Hence we have to find a new Lie bracket [, ]− closed in the Hermitian operators. It is not difficult

to find an ad hoc one which satisfies this property, but we shall obtain it in a more reasoned

way that may provide us as well with new information about the sets we deal with.

Inside GL(N,C) we find the unitary group U(N), which is the set of operators U which

preserve the hermitian structure of the Hilbert space 〈Uψ|Uχ〉 = 〈ψ|χ〉 and is a Lie subgroup of

GL(N,C). The Lie algebra associated to the unitary group U(N) will hence be a subalgebra of

gl(n,C) which we denote u(N) or u to abbreviate. By using the exponential map we can identify

the elements of u as the antihermitian operators:

etT ∈ U =⇒ (etT )† = (etT )−1 =⇒ T † = −T

The set of Hermitian operators can then be written as HermH ∼= iu, by defining the map

φ : u 7−→ iu, φ(A) = iA which relates both sets. φ allows us to transport the Lie algebra

structure of u to iu, hence resulting the Lie bracket:

[A,B]− = φ([φ−1(A), φ−1(B)]) = −i[A,B] A,B ∈ iu

Even more, if it were necessary we could use it to endow u with a Jordan product, since again

the restriction of the one defined in M(N,C) is not valid since it is not closed in u. Hence
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(M(C, N), ·, [, ], ◦,† ,Tr)

(u, [, ]+, [, ],Tr)

(iu, ◦, [, ]−,Tr)
((iu)∗,Λ, R,Tr) φ

ϕ

(C∞(iu∗), {, })

Figure 2.1: Mathematical strutures described in this section (in red the ones transported by the
isomorphism φ).

transporting the one in iu by φ we obtain a Jordan product [, ]+

[A,B]+ = φ−1(φ(A) ◦ φ(B)) =
i

2
(AB +BA) A,B ∈ u

In general, the isomorphism φ existent between both spaces allows us to use either of them to

describe the physics of the system. The advantage of choosing iu is that its elements have real

eigenvalues, what makes its interpretation as possible results of a physical measurement more

straightforward.

To finish, both M(N,C) and its subspaces u and iu are endowed with a metric or scalar prod-

uct via the trace (A,B) = trA†B, what makes them automatically normed spaces with the

Frobenius norm ‖A‖ =
√

trA†A. From here it is not difficult to check that (iu, ◦, [, ]−, ‖ · ‖) is

an LJB algebra. It is this structure which contains all the physics of the system. The relation

between C*-algebras and LJB algebras goes indeed beyond this, since it can be proved that the

complexification of a given LJB algebra is the only C*-star algebra that has it as its real part,

i.e., the observables determine the set of operators [9]. The reader will find a graphical summary

of this section and the next in figure 2.1.

2.2 Geometry over (iu)∗

In this section we are going to turn the algebraic structure with which iu is endowed into a

geometric structure over its dual (iu)∗. This will be possible thanks to the fact that, in finite

dimension, by Riesz theorem the two spaces are identified by an isomorphism given by the scalar

product, ϕ : iu 7−→ (iu)∗, A 7−→ (A, ·). This identification allows us to transport any structure

that we need between both spaces3, in the same way that we did with iu and u. Since iu is a

Lie algebra, its dual has what we know as a canonical Poisson structure. Let us see how this is.

In the first place, (iu)∗ is a real vector space, so that by choosing a basis {ei} we can endow

it with a structure of differentiable manifold with a unique global chart. Over this manifold

we have the set of infinitely differentiable functions C∞(iu∗), where we find, among others, the

elements of the bidual iu∗∗, that is to say, the linear functionals over (iu)∗. Since we are in finite

dimension, we can identify the bidual with the original space A ∈ iu ←→ Â ∈ (iu)∗∗ in a way

3We must warn that this has led to the use of formalisms like the one we are to describe in several different
spaces, all of them isomorphic, and thus equivalent, hence in the bibliography we can find these same constructions
realized over, for example, u∗, the dual of u.
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such that4 Â(ξ) = (ξ, A) ∀ξ ∈ (iu)∗. It is then perfectly sensible to define the following tensors

(bivectors) over (iu)∗:

Λξ(dÂ, dB̂) = (ξ, [A,B]−) Rξ(dÂ, dB̂) = (ξ, A ◦B)

We can define this tensors in terms of the basis of bivectors ∂
∂xi
⊗ ∂

∂xj
associated to the basis

{ei} if we previously define the structure constants:

[ei, ej ]− =
∑
k

ckijek ei ◦ ej =
∑
k

dkijek

The component of the Λ tensor in ∂
∂xi
⊗ ∂

∂xj
will hence be given by

Λξ(dêi, dêj) = (ξ, [ei, ej ]−) = (ξ,
∑
k

ckijek) =
∑
k

ckijxk(ξ)

where we denote by xk the coordinate function (·, ek) = êk. In the same way we act with the

tensor R, so that both are expressed as

Λ =
∑

ckijxk
∂

∂xi
∧ ∂

∂xj
R =

∑
dkijxk

∂

∂xi
⊗S

∂

∂xj

where ∧ and ⊗S denote the antisymmetrized and symmetrized tensor products respectively:

∂

∂x
∧ ∂

∂y
=

∂

∂x
⊗ ∂

∂y
− ∂

∂y
⊗ ∂

∂x

∂

∂x
⊗S

∂

∂y
=

∂

∂x
⊗ ∂

∂y
+

∂

∂y
⊗ ∂

∂x

The tensor Λ is antisymmetric, it is obtained canonically from the Lie algebra structure in iu

and it is called the Poisson tensor. Mathematically, Poisson tensors are a particular class of

antisymmetric bivectors characterized by [Λ,Λ]S = 0 where [, ]S denotes the Schouten bracket,

a generalization of the vector field conmutator for multivectors of arbitrary degree. In Physics

they are important since they induce, on the space of functions C∞ over the manifold where

they are defined, a bilinear operation known as Poisson bracket, {f, g} = Λ(df, dg), which is

used in Classical Mechanics to define the dynamics. The tensor R is a symmetric tensor induced

by the Jordan algebra structure of iu.

Let us see which role these tensors play in the dynamics. If we have an evolution given by a first

order linear differential equation, we can translate it in geometrical terms as follows. Assume we

have the differential equation for a curve in (iu)∗, γ̇(t) = Kγ(t) with K a certain linear operator

over (iu)∗, that is, K ∈ gl((iu)∗). We want to rewrite it as

γ̇(t) = XK
γ(t)

with XK ∈ X((iu)∗) a vector field over (iu)∗. If we decompose both equations in components

respect to a basis in (iu)∗, which can be the dual basis to the one we have in iu, ẽi = ϕ(ei), we

have γ(t) =
∑
γj(t)ẽj y

γ̇j = (Kγ(t), ej) = (γ(t),K†ej) γ̇j = XK
γ(t)(dêj)

4Here usual notation is a bit confusing: we usually denote in the same way the scalar product of two matrices
A,B of iu, (A,B), and the result of applying ξ ∈ (iu)∗ to A ∈ iu, (ξ, A).
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where K† is the adjoint operator of K. By comparison we can deduce how the field we look for

acts on a function Â:

XK
ξ (Â) = (Kξ,A) = (ξ,K†A)

The Poisson tensor allows us to define a Hamiltonian dynamics on (iu)∗. Let us assume for

example that we are interested in translating to this formalism the equation that governs the

time evolution of the density matrices, which is von Neumann’s equation ρ̇ = adH(ρ) with

adH = [H, ·]− in the role of the generic operator 5 K. This way we compute the operator ad†H :

(adH(A), B) = tr
(

(−i(HA−AH))†B
)

= i (tr(AHB)− tr(HAB)) = i (tr(AHB)− tr(ABH)) =

= tr (Ai(HB −BH)) = (A,− adH(B)) =⇒ ad†H = − adH

and we conclude that the field that gives us the Hamiltonian dynamics for the density matrices

is

XH
ξ (B̂) = (ξ,− adH(B)) = −Λξ(dĤ, dB̂) =⇒ XH = −Λ(dĤ, ·)

2.3 Evolution in the space of tensors

We have seen in chapter 1 that, in general, in open systems the evolution of the density matrix

is not given by von Neumann’s equation but by a more general Lindblad operator (1.9). This

field has a more complete interpretation in geometric terms. To see it, we proceed to diagonalize

the matrix cij by makin a change of basis in the Fi. Since it is positive definite, the eigenvalues

of the matrix are positive, and a small computation leads us to express (1.9) as

Lρ = −i[H, ρ] +
1

2

N2−1∑
i=1

([Ki, ρK
†
i ] + [Kiρ,K

†
i ]) = −i[H, ρ] +

1

2

N2−1∑
i=1

(2KiρK
†
i −K

†
iKiρ− ρK†iKi) =

= −i[H, ρ] + J ◦ ρ+
N2−1∑
i=1

KiρK
†
i

where J =
∑

iK
†
iKi. The operators Ki receive the name of Kraus operators. This way, the

field has the form
dρ

dt
= Lρ = [H, ρ]− + J ◦ ρ+

∑
α

KiρK
†
i (2.1)

or expressing it as a vector field, like we saw in the previous section:

dρ

dt
= XL = −Λ(dĤ, ·) +R(dĴ, ·) +XK

Hence, the field whose integral curves give the evolution of the density matrix is made of a

Hamiltonian field XH = −Λ(dĤ, ·), a gradient field XJ = R(dĴ, ·) and a field XK associated to

Kraus operators, which in general cannot be described in terms of the bivectors Λ, R. Subject

to this evolution, the density matrix will describe a curve rho(t) over the manifold D(H) of

density matrices. This is an example of stratified manifold: it can be divided in strata according

5Note that in order not to use too much notation we are constantly making use of the isomorphism ϕ between
iu and (iu)∗, so that we identify the density matrix with its corresponding element ρ ∈ (iu)∗. Being explicit we
would then have K = φ ◦ adH ◦φ−1.
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to the rank of the density matrix, from those of rank 1 (pure states |ψ〉〈ψ|) to those of rank N

remember the example of the Bloch sphere in chapter 1). The characteristics of the evolution

associated to each field are different:

• A Hamiltonian field preserves the trace and the purity of a density matrix. We have seen

that in the Bloch sphere purity corresponds to radius, hence such a field is tangential to

constant radius surfaces.

• A gradient field does not preserve the trace of the matrix, but it preserves its rank (it is

tangent to the strata). We cannot represent it easily on the Bloch sphere, since due to it

not being trace-preserving, it points away of the three-dimensional hyperplane where the

sphere is.

• The field associated to Kraus operators does not preserve the trace nor the rank of the

matrix.

• The total field (sum of all three) does preserve the trace, since the effects of the gradient

and Kraus fields cancel out (note that J depends on Ki in the right way for this to

hold).However, the presence of the Kraus field causes that in general the rank of the

matrix is not preserved and the states lose purity (decoherence): the field now points

towards the inside of the Bloch sphere.

Once we have seen this, we know wonder:can we transport the time evolution that affects

the density matrices to the space of tensors? Our idea is now to fix the density matrix and

build a family of tensors {Λ(t)}t≥0, {R(t)}t≥0 which represents the time evolution of the system.

Remember that these tensors encode the structure of the LJB algebra, our idea is to let this

structure evolve:

[, ]→ [, ]t tal que [A(t), B(t)] = [A(0), B(0)]t

Chruściński et al. apply this ideas to the associative product in [6]. This allows to study in

other terms, for example, the purity of a state tr ρ2(t) = tr (ρ(t) · ρ(t)) = tr (ρ(0) ·t ρ(0)) with ·t
a time dependent associative product.

This structure evolution has a natural interpretation in geometric terms. Consider a curve ρ(t)

in (iu)∗. If this curve corresponds to the dynamics governed by a field XL, i.e. if ρ(t) is an

integral curve of this field:
∂ρ(t)

∂t
= XL

ρ(t)

and φt is the associated flux (ρ(t) = φt(ρ0)), we can use it to transport the tensor along the

integral curves of the field XL, and this way obtain a time evolution

Λ(t)
p (α, β) = Λ

(0)

φ−1
t (p)

(φ∗t (α), φ∗t (β)) (2.2)

for α, β to arbitrary forms and p any point of the manifold. Another way of seeing who the

evolution of structures and tensors are related is:

Λ
(0)
ρ(t)(dÂ, dB̂) = (ρ(t), [A,B])→ (ρ(0), [A,B]t) = Λ

(t)
ρ(0)(dÂ, dB̂)
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From (2.2) it follows the differential equation which governs the evolution of tensors:

d

dt
Λ(t) = −LXLΛ(t) d

dt
R(t) = −LXLR(t)

where LXL is the Lie derivative operator with respect to the field XL. The solution will be

Λ(t) = e−tLXLΛ(0) R(t) = e−tLXLR(0)

Since the flux φt is a diffeomorphism for any finite time t, the result of the evolution seems not to

be too interesting: Λ(t) y R(t) are all diffeomorphic and the associated algebras are also pairwise

isomorphic. That is why we will be much more interested by the behaviour at long times, which

we will effectively represent as the limit t→∞. If it exists, we can define the limit structures

Λ∞ = lim
t→∞

Λ(t) R∞ = lim
t→∞

R(t)

which inform us about the system after a long time has passed. In particular, if the antisymmetric

tensor loses components, the associated Lie algebra is more abelian, there are more operators

that conmute, and the quantum character is supressed while a more classical behaviour emerges.

It is worth to remark what happens in iu when we make the tensors evolve in (iu)∗. This is

equivalent to having algebraic structures which depend on t. When we take the limit t → ∞,

in some cases the resulting algebra (associated to Λ∞, R∞) is different from the original one.

This is known as contraction of algebras. In 1953 Inönü and Wigner used such a contraction

to obtain the algebra of the Galilean transformation group from that of the Poincaré group by

taking the limit of infinite speed of light c, c→∞ [12].

In the next chapter we will see some examples of what we proposed in this chapter.



Chapter 3

Examples

In this chapter we will put to use what we have seen in the previous ones, and we will try to

find out when the proposed construction actually works in the t→∞ limit.

3.1 Decoherence in three levels

We choose to work a three-level systemH = span{|1〉, |2〉, |3〉}. The space of Hermitian operators

has then dimension 9. To work in it we choose the basis of Gell-Mann matrices:

{λi} =




0 1 0

1 0 0

0 0 0

 ,


0 −i 0

i 0 0

0 0 0

 ,


1 0 0

0 −1 0

0 0 0

 ,


0 0 1

0 0 0

1 0 0

 ,


0 0 −i
0 0 0

i 0 0




0 0 0

0 0 1

0 1 0

 ,


0 0 0

0 0 −i
0 i 0

 ,

√
1

3


1 0 0

0 1 0

0 0 −2

 ,

√
2

3


1 0 0

0 1 0

0 0 1




By choosing this basis, we reduce the preservation of the trace of ρ =
∑
xiλi to the conservation

of its component x9, since every matrix in the basis is traceless safe for λ9, which is proportional

to the identity. This, as we will see later, will decrease a little bit the complexity of the problem.

Let us first focus on the antisymmetric tensor. Remember that Λ has the form:

Λ =
∑

ckijxk
∂

∂xi
∧ ∂

∂xj

where ckij are the structure constants which define the Lie algebra, and additionally they are

the coordinates of Λ in the basis of linear antisymmetric bivectors {xk∂i ∧ ∂j} (where we use

∂i = ∂
∂xi

as an abbreviation). The evolution of Λ will take place in this linear space, hence it

is convenient for us to ask ourselves what is dimension is. The answer is quite a non-negligible

number: since we can assume i < j (∂i ∧ ∂j = −∂j ∧ ∂i), we have
9(9− 1)

2
= 36 possible values

for the pair (i, j) and 9 values for k: the space of antisymmetric linear bivectors over (iu)∗ has

dimension 36 · 9 = 324. This forces us to use a symbolic calculus software to study this system.

We use Mathematica 9 to perform the calculations in what follows. Even in this case, every

simplification of the problem is welcome, hence we note that it will always be cki9 = 0 since

19
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in our case λ9 is proportional to the identity, a matrix that conmutes with any other matrix.

By not considering the corresponding basis elements, we may restrict ourselves to a subspace

S = span{xk∂i ∧ ∂j}1≤i<j≤8, 1≤k≤9 of dimension “only” 252.

Thanks to the symbolic calculus software we can compute the matrix of the operator LXL acting

on this subspace. Remember that the physical information of our system is contained in XL,

the Lindblad field, which is linear and has the appropiate form (seen in section 2.3, from the

results by Gorini, Kossakowski and Sudarshan) so that the operator can be restricted to the

subspace we are working in

LXL : S 7−→ S

The limit Λ∞ of the tensor evolution will exist if it exists limt→∞ e
−tL

XL , for which it is a

sufficient condition that the eigenvalues of the matrix representation of LXL over S all have

positive real parts. For a matrix of dimension 252 this seems a lot to ask for, and indeed, we

check that for many simple fields XL the operator LXL has eigenvalues with both positive and

negative real parts.

The solution to this problem comes from repeating the former strategy: we must restrict our-

selves to a smaller subspace. Hence the necessary and sufficient condition for the limit to exist is

the existence of a subspace S+ ⊂ S such that (i) it contains the initial condition of our dynamics

(Λ ∈ S+), (ii) it is invariant under the operator LXL (LXL(S+) ⊂ S+) and (iii) the eigenvalues

of the restriction of LXL to S+ have positive real parts.

We start hence with an example taken from [6], in which a particle with a finite and discrete

spectrum suffers decoherence. We take:

Lρ = −γ[X, [X, ρ]] con γ > 0, X =

3∑
m=1

m|m〉〈m|

The interested reader can check that indeed this field is of the form (2.1) with only one Kraus

operator K =
√

2γX. If we have it act on |m〉〈n| we get

L|m〉〈n| = −γ(m− n)2|m〉〈n|

Therefore it is patent that the particle is suffering decoherence, since every off-diagonal term of

the density matrix will decay exponentially. This can also be clearly seen in the corresponding

field XL which we write:

XL = −γ∂1 − γ∂2 − 4γ∂4 − 4γ∂5 − γ∂6 − γ∂7

Indeed,the components associated to the non-diagonal elements of the basis (all but λ3, λ8 and

λ9) go to zero, and ρ is ieft asymptotically diagonal. Once the dynamics of ρ is understood, let

us see if we can transfer it to the tensors. If we compute the time dependent structure constants

ckij(t) in this example, we find a problem, or, to be precise, four problems:

c51,6(t)→∞ c41,7(t)→ −∞ c42,6(t)→ −∞ c52,7(t)→ −∞

If we diagonalize the matrix of the operator we find the cause. In S there exists an invariant

subspace S− of dimension 34 associated to eigenvalues with negative real part. The initial tensor
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Λ turns out to have nonvanishing projection on this subspace given by

x5
2
∂1 ∧ ∂6 −

x4
2
∂1 ∧ ∂7 −

x4
2
∂2 ∧ ∂6 −

x5
2
∂2 ∧ ∂7

Consequently, there exists no invariant subspace S+ with eigenvalues that have positive real

parts that contains Λ. Note that this does not mean that the evolution that this field induces in

the density matrices is not convergent, only that if we choose to try and transfer this dynamics

to the tensors, their long time limit, at least for the antisymmetric tensor, is not well defined.

The treatment of this example done in [4] is somewhat different, since the operator used is:

L|m〉〈n| = −4γ sin2

(
(m− n)π

3

)
|m〉〈n|

(The main difference is that we now consider {|m〉} as the discretized position eigenstates of a

particle on a circle instead of a line, what introduces an extra symmetry in the system). This

way, the field is

XL = −3γ∂1 − 3γ∂2 − 3γ∂4 − 3γ∂5 − 3γ∂6 − 3γ∂7

and now Λ converges. An analogous treatment reveals that R also converges. In addition, the

Lie algebra associated to Λ∞ and the Jordan algebra associated to R∞ are compatible in a way

that they define a LJB algebra over the limit submanifold.

3.2 General case for real diagonal Kraus operators

Motivated by the former examples and given that it is a simple case inside the vast amount of

possible dynamics for a physical system, we are going to try to totally understand the conver-

gence of tensors under a field given by an arbitrary number of real diagonal Kraus operators in

three dimensions. Let then

Ki =
√

2


ai 0 0

0 bi 0

0 0 ci

 ai, bi, ci ∈ R, i = 1, . . . , n

where we have included a factor
√

2 for convenience for the computations that follow and let us

consider the Lindblad operator:

Lρ =
∑
i

KiρK
†
i + J ◦ ρ

with J =
∑

iK
†
iKi the one corresponding to our choice of Kraus operators. We start with the

simplest case, n = 1. The Lindblad field is

XL = −γa∂1 − γa∂2 − γb∂4 − γb∂5 − γc∂6 − γc∂7 (3.1)

where

γa = (b1 − a1)2 γb = (a1 − c1)2 γc = (c1 − b1)2
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From here we can deduce the form of the Lindblad field for any n. Indeed, if L =
∑

i Li with

Liρ = KiρK
†
i + (K†iKi) ◦ ρ, it is not difficult to check the following two additivity properties:

XL =
∑
i

XLi LXL =
∑
i

LXLi

Hence in general the field will have the form of (3.1) with

γa =
∑
i

(bi − ai)2 γb =
∑
i

(ai − ci)2 γc =
∑
i

(ci − bi)2 (3.2)

Let us consider the case of the antisymmetric tensor. With this field, the eigenvectors of LXL

turn out to be precisely the bivectors of our basis, hence we have the great advantage that the

matrix of the operator is diagonal. Indeed, this is satisfied for any field of the form:

X = −
∑
l

γlxl∂l

We can prove it and at the same time compute the associated eigenvalue:

LX(xk∂i ∧ ∂j) =
∑
l

L−γlxl∂l(xk∂i ∧ ∂j) =
∑
l

−γl ([xl∂l, xk∂i] ∧ ∂j + xi∂i ∧ [xl∂l, ∂j ]) =

= (−γk + γi + γj)xk∂i ∧ ∂j

The following table displays all the elements of the basis on which Λ has nonvanishing projection,

and the associated eigenvalue, asumiendo ya γ1 = γ2 = γa,γ4 = γ5 = γb y γ6 = γ7 = γc:

i, j, k Eigenvalue i, j, k Eigenvalue i, j, k Eigenvalue

1,2,3 2γa 2,6,4 γa + γb − γc 4,7,1 −γa + γb + γc

1,3,2 0 2,7,5 γa − γb + γc 4,8,5 0

1,4,7 γa + γb − γc 3,4,5 0 5,6,1 −γa + γb + γc

1,5,6 γa + γb − γc 3,5,4 0 5,7,2 −γa + γb + γc

1,6,5 γa − γb + γc 3,6,7 0 5,8,4 0

1,7,4 γa − γb + γc 3,7,6 0 6,7,3 2γc

2,3,1 0 4,5,3 2γb 6,7,8 2γc

2,4,6 γa + γb − γc 4,5,8 2γb 6,8,7 0

2,5,7 γa + γb − γc 4,6,2 −γa + γb + γc 7,8,6 0

If we want the antisymmetric tensor to converge, all of the listed eigenvalues must be bigger or

equal to zero. We must hence demand the following set of inequalities:

0 ≤ γa ≤ γb + γc 0 ≤ γb ≤ γc + γa 0 ≤ γc ≤ γa + γb (3.3)

Equivalently γa, γb, γc should be the sides of a triangle. To see what this conditions means

in terms of Kraus operators, consider the (affine) points A ≡ ~a = (a1, . . . , an), B ≡ ~b =

(b1, . . . , bn), C ≡ ~c = (c1, . . . , cn) ∈ Rn. The sides of the triangle they define are, due to

(3.2):

‖~b− ~a‖ =
√
γa ‖~a− ~c‖ =

√
γb ‖~c−~b‖ =

√
γc
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Hence the conditions (3.3) turn into

‖~b−~a‖2 ≤ ‖~a−~c‖2 +‖~c−~b‖2 ‖~a−~c‖2 ≤ ‖~c−~b‖2 +‖~b−~a‖2 ‖~c−~b‖2 ≤ ‖~b−~a‖2 +‖~a−~c‖2

But because of the cosine law this becomes

cos ÂCB ≥ 0 cos ĈBA ≥ 0 cos B̂AC ≥ 0

Hence we reach the following somewhat more concise that intuitive conclusion:

The antisymmetric tensor converges for evolution given by Kraus operators Ki if and

only if the points A,B,C define an acute triangle.

A

B

C

~a
~c

~b

√
γb

√
γc√

γa

Figure 3.1: Graphical representation employed to enunciate the convergence conditions.

By a similar procedure we check that the convergence condition is the same for the symmetric

tensor R associated to the Jordan structure.

There is a couple of consequences we can draw from this result. The first one corresponds to

the case n = 1, only one Kraus operator. The cited triangle is then obviously degenerate, since

it is contained in R, and the convergence condition is reduced to at least two of the points

A,B,C being the same, i.e., at least one γ is 0 (if the three points coincide the Kraus operator

is a multiple of the identity, and the operator L vanishes). On the other hand, the condition

and characteristics of convergence (which only depend on γa, γb, γc) are invariant by translation

and rotation of the triangle, hence we can always consider one of the vertices to be the origin,

another one to be on the x-axis, and the third one on the xy-plane, so that only a maximum

of two Kraus operators are needed to get a given field (as long as it is of the form (3.1) and
√
γa,
√
γb,
√
γc can be the sides of a triangle):

K1 =
√

2


a1 0 0

0 0 0

0 0 0

 ,K2 =
√

2


a2 0 0

0 b2 0

0 0 0


a1 =

γc + γb − γa
2
√
γc

a2 =
√
γb − a21

b2 =
√
γc

In this manner, for the example taken from [4] this operators are enough:

K1 =
√

2


√

3γ

2
0 0

0 0 0

0 0 0

 ,K2 =
√

2


3
√
γ

2
0 0

0
√

3γ 0

0 0 0


and we have convergence since the triangle is equilateral.



Conclusiones

What have we done?

In this work we have presented a technique to study time evolution in open systems, which

consists in transferring the dynamics from one set of mathematical objects (density matrices)

to another one (algebraic structures defined on them). We have cared specially for the existence

of the long time limit of such dynamics, with the hope of extracting conclusions in the cases in

which such limit is nontrivial. To this respect, we have checked that convergence of the tensors

is not guaranteed, even though the evolution in the space of density matrices is perfectly well-

defined and convergent. We have seen as well that in certain particular cases we can characterize

the systems whose tensors converge.

What is to be done yet?

The study of tensor dynamics promises to be broad and offer very diverse and interesting situa-

tions to be analysed. The last convergence characterization presented in chapter 3 is susceptible

of being generalized by considering an arbitrary number of levels in the system, or relaxing the

conditions on the Kraus operators. For example, if we consider complex operators, the vector

field is no longer as simple and the bivector basis we have been using is no longer an eigenba-

sis, except in very particular cases. It would also be very interesting to try to understand the

physical meaning of the convergence characterization that we have found (and which basically

seems to mean that there cannot be a decay rate that is much quicker than others), as well as

the consequences, if any, that the existence of the limit has for the behaviour of the system.

More in general, the analysis of the limit structures Λ∞, R∞, and the information that can be

obtained from them should be performed. As an example, given the limit Lie algebra we should

be able to compute, from its Casimir operators (those which conmute with every element in the

algebra), conserved quantities of the dynamics on the limit submanifold.
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[5] José Fernando Cariñena, Jesús Clemente-Gallardo, and Giuseppe Marmo. Geometrization

of quantum mechanics. Theoretical and Mathematical Physics, 152(1):894 – 903, 2007.
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[15] Karl Kraus, Arno Böhm, John D Dollard, and WH Wootters. States, effects, and operations

fundamental notions of quantum theory. In States, Effects, and Operations Fundamental

Notions of Quantum Theory, volume 190, 1983.

[16] Goran Lindblad. On the generators of quantum dynamical semigroups. Communications

in Mathematical Physics, 48(2):119–130, 1976.

[17] Jerrold E Marsden and Tudor Ratiu. Introduction to mechanics and symmetry: a basic

exposition of classical mechanical systems, volume 17. Springer Science & Business Media,

2013.

[18] John Von Neumann. Mathematical foundations of quantum mechanics. Number 2. Princeton

university press, 1955.

[19] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.

Cambridge university press, 2010.
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