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Motivation: Why this talk in this workshop

e Gaussian tensor networks impose the Gaussianity of the global state at the
level of the local tensor
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[Kraus et al., 09]

 GfPEPS have been used to build examples of topological insulators and
superconductors... but they face an obstruction in the form of a no-go
theorem:
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Any complex vector bundle that is polynomial and analytic is topologically trivial

(Any GfPEPS with a local gapped parent Hamiltonian has vanishing Chern number!)

[Wahl et al., 13]
[Read, Dubail, 13]
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Motivation: Why this talk in this workshop

e Gaussian tensor networks being barred from efficiently representing a Gaussian
state is pretty demoralizing news...

* We come to wonder about the differences between the interacting and
noninteracting approach (one of the points in the brainstorming session!)

* This talk contains an example where there is such a separation: Gaussian tensor
networks being strictly worse (in a particular sense) than non Gaussian ones at
representing a Gaussian state

 The context is that of 1d critical systems, so we will be speaking of Gaussian
fermionic matrix product states (GfMPS)
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Outline

e Statement of the result

* |deas of the proof

 OQutlook
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MPS Approximation Theorem

Family of states on increasing system sizes
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with logarithmic bound on Rényi entropies
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[Verstraete, Cirac, 06]

Family of MPSs
UN)
with polynomial bond dimension
D(N) ~ poly(N)
and arbitrarily small error for any size

[len) = 13| < e
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Desideratum: GfTMPS Approximation Theorem

Family of Gaussian fermionic states on
increasing system sizes
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Family of Gaussian fermionic MPSs
UN )
with polynomial bond dimension
D(N) ~ poly(N)
and arbitrarily small error for any size

[len) = 13| < e
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Searching for a Gaussian approximation theorem

Simple noninteracting critical model: hopping fermions gé ?P
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Result: our example is a counterexample [AF-R, Cirac, 22]

Any Gaussian fermionic MPS approximation to our target ground state
with bounded error must have superpolynomial bond dimension

D(N) ~ poly(N) = Tim (¥ [¥}") =0
— 0O

CFT (c = 1 compactified free boson) + heuristic Tok-1

arguments from tensor network folklore 3
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Result: our example is a counterexample

[A.F.-R., Cirac., 22]

Any Gaussian fermionic MPS approximation to our target ground state
with bounded error must have superpolynomial bond dimension

D(N) ~ poly(N) = Tim (¥ [¥}") =0
— 0O

However, there exists a (necessarily non Gaussian) MPS approximation to our
target ground state with bounded error and polynomial bond dimension!

(since it satisfies the conditions for the MPS approximation theorem)
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|deas of the proof: low rank approximation

We bound the error due to the truncation at the central bipartition

/ Q—Q%Q—Q
/
T/ T

Problem: approximate a bipartite state by a state of a given Schmidt rank

Solution (Eckart-Young-Mirsky thm.): truncate the singular value decomposition (SVD)

The error is given by the tail of the Schmidt distribution 0
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|deas of the proof: low rank approximation

We bound the error due to the truncation at the central bipartition

/ Q—Q%Q—Q
/
T/ T

Problem: approximate a Gaussian state by a Gaussian state of a given Schmidt rank

Solution: truncate the Gaussian SVD (“constrained” truncation: whole modes)

The error is given by the entanglement of the truncated modes

e=1—exp (—S;gum[r])
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|deas of the proof: CFT and Toeplitz determinants

We need to estimate the contribution to the entropy of the modes we truncate:

- 14|\ O —
exp (—Sf,iunclr]) = H 5 - — > e
i=r+1 O —

The “Gaussian Schmidt values” come from diagonalizing the correlation matrix.

They can be obtained approximately from CFT (in the continuum limit):

T2 &, .
‘)\J| ~ tanh (710;6) é?j ~ ]
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|deas of the proof: CFT and Toeplitz determinants

We need to estimate the contribution to the entropy of the modes we truncate:

= 14|\ [—
exp (—Sf,iunc[r]) = H 5 - — > e
i=r+1 e e

The “Gaussian Schmidt values” come from diagonalizing the correlation matrix.

For discrete chains, since it is a Toeplitz matrix , there are asymptotic estimates for
ist determinant
[Jin, Korepin, 04]

d [Basor, 79]

Fij — Fi—j Zf 27TZ /Cdz f( )dz logdet (ZI F)

14.12.23 Expressivity of Gaussian tensor networks A. Franco-Rubio



Fun fact: GIMPS and linear systems
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X = Cuk + ka_1

Y(z) =T(2)U(2)

T(z)=A+B(D —zI)"C

F (rper) ~ T(2) *~(2 |

GfMPS with a particular symmetry (time reversal invariance) can be seen as LTl systems and we can import results
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Outlook: Higher dimensions?

e Gaussian tensor networks allow for dimensional reduction

)y

GfPEPS GfMPSs

v

* Thus, expectedly, Gaussian tensor networks will need superpolynomial bond
dimensions to approximate critical states in higher dimensions.

e Approximation with PEPS?

e 2D version of the LTI system correspondence?
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Thank youl!

(arXiv reference: 2204.02478)
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